CALCUULUSEARLY TRANSCENDENTALS
 ANTON BIVENS © DAVS

11E

Calculus provides a way of viewing and analyzing the physical world. As with all mathematics courses, calculus involves equations and formulas. However, if you successfully learn to use all the formulas and solve all of the problems in the text but do not master the underlying ideas, you will have missed the most important part of calculus. If you master these ideas, you will have a widely applicable tool that goes far beyond textbook exercises.

Before starting your studies, you may find it helpful to leaf through this text to get a general feeling for its different parts:

- The opening page of each chapter gives you an overview of what that chapter is about, and the opening page of each section within a chapter gives you an overview of what that section is about. To help you locate specific information, sections are subdivided into topics that are marked with a box like this
■ Each section ends with a set of exercises. The answers to most odd-numbered exercises appear in the back of the book. If you find that your answer to an exercise does not match that in the back of the book, do not assume immediately that yours is incorrect-there may be more than one way to express the answer. For example, if your answer is $\sqrt{2} / 2$ and the text answer is $1 / \sqrt{2}$, then both are correct since your answer can be obtained by "rationalizing" the text answer. In general, if your answer does not match that in the text, then your best first step is to look for an algebraic manipulation or a trigonometric identity that might help you determine if the two answers are equivalent. If the answer is in the form of a decimal approximation, then your answer might differ from that in the text because of a difference in the number of decimal places used in the computations.
- The section exercises include regular exercises and four special categories: Quick Check, Focus on Concepts, True/False, and Writing.
- The Quick Check exercises are intended to give you quick feedback on whether you understand the key ideas in the section; they involve relatively little computation, and have answers provided at the end of the exercise set.
- The Focus on Concepts exercises, as their name suggests, key in on the main ideas in the section.
- True/False exercises focus on key ideas in a different way. You must decide whether the statement is true in all possible circumstances, in which case you would declare it to be "true," or whether there are some circumstances in which it is not true, in which case you would declare it to be "false." In each such exercise you are asked to "Explain your answer." You might do this by noting a theorem in the text that shows the statement to be true or by finding a particular example in which the statement is not true.
- Writing exercises are intended to test your ability to explain mathematical ideas in words rather than relying solely on numbers and symbols. All exercises requiring writing should be answered in complete, correctly punctuated logical sentences-not with fragmented phrases and formulas.
- Each chapter ends with two additional sets of exercises: Chapter Review Exercises, which, as the name suggests, is a select set of exercises that provide a review of the main concepts and techniques in the chapter, and Making Connections, in which exercises require you to draw on and combine various ideas developed throughout the chapter.
■ Your instructor may choose to incorporate technology in your calculus course. Exercises whose solution involves the use of some kind of technology are tagged with icons to alert you and your instructor. Those exercises tagged with the icon \sim require graphing technology-either a graphing calculator or a computer program that can graph equations. Those exercises tagged with the icon \square require a computer algebra system (CAS) such as Mathematica, Maple, or available on some graphing calculators.
- Inside the front and back covers of the text you will find endpapers that contain useful formulas.
■ Five summary appendices are included at the end of the text, surveying key definitions and facts from trigonometry, general functions, and inverse functions. More detailed versions of these appendices, as well as eleven additional appendices that supply further support and/or extend the text, are available in web versions.
■ The ideas in this text were created by real people with interesting personalities and backgrounds. Pictures and biographical sketches of many of these people appear throughout the book.
- Notes in the margin are intended to clarify or comment on important points in the text.

A Word of Encouragement

As you work your way through this text you will find some ideas that you understand immediately, some that you don't understand until you have read them several times, and others that you do not seem to understand, even after several readings. Do not become discouraged-some ideas are intrinsically difficult and take time to "percolate." You may well find that a hard idea becomes clear later when you least expect it.

Web Sites for this Text

www.antontextbooks.com

www.wiley.com/go/global/anton

WileyPLUS

WileyPLUS is a research-based online environment for effective teaching and learning.

WileyPLUS builds students' confidence because it takes the guesswork out of studying by providing students with a clear roadmap:

- what to do
- how to do it
- if they did it right

It offers interactive resources along with a complete digital textbook that help students learn more. With WileyPLUS, students take more initiative so you'll have greater impact on their achievement in the classroom and beyond.

For more information, visit www.wileyplus.com

WileyPLUS

ALL THE HELP, RESOURCES, AND PERSONAL SUPPORT YOU AND YOUR STUDENTS NEED!

2-Minute Tutorials and all of the resources you and your students need to get started

Quick

Start

Pre-loaded, ready-to-use assignments and presentations created by subject matter experts

WileyPLUS

Student

Partner
Program

Student support from an experienced student user

Technical Support 24/7 FAQs, online chat, and phone support www.wileyplus.com/support

Wiley Faculty Network

Collaborate with your colleagues, find a mentor, attend virtual and live events, and view resources www.WhereFacultyConnect.com

© Courtney Keating/iStockphoto
Your WileyPLUS Account Manager, providing personal training and support

WileyPLUS with ORION

A personalized, adaptive learning experience.

WileyPLUS with ORION delivers easy-to-use analytics that help educators and students see strengths and weaknesses to give learners the best chance of succeeding in the course.

Identify which students are struggling early in the semester.

Educators assess the real-time engagement and performance of each student to inform teaching decisions. Students always know what they need to work on.

Help students organize their learning and get the practice they need.
With ORION's adaptive practice, students quickly understand what they know and don't know. They can then decide to study or practice based on their proficiency.

Measure outcomes to promote continuous improvement.

With visual reports, it's easy for both students and educators to gauge problem areas and act on what's most important.

EARLY TRANSCENDENTALS

HOWARD ANTON Drexel University

IRL BIVENS Davidson College
STEPHEN DAVIS
Davidson College

JOHN WILEY \& SONS, INC.
Vice President \& Director: Laurie Rosatone
Acquisitions Editor: Shannon Corliss
Sponsoring Editor: Jennifer Brady
Freelance Project Editor: Anne Scanlan-Rohrer
Marketing Manager: John LaVacca III
Senior Product Designer: David Dietz
Product Design Manager: Thomas Kulesa
Market Solutions Assistant: Ryann Dannelly
Production Services: Carol Sawyer/The Perfect Proof
Senior Content Manager: Karoline Luciano/Valerie Zaborski
Senior Production Editor: Laura Abrams
Senior Designer: Maureen Eide
Photo Editor: James Russiello
Cover Photo: Carlos Fernandez/Getty Images
Sunrise Icon: AlexSava / iStockphoto
iStockphoto

This book was set in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ by MPS Limited, and printed and bound by Courier Kendallville. The cover was printed by Courier Kendallville.

This book is printed on acid-free paper.
Founded in 1807, John Wiley \& Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

The paper in this book was manufactured by a mill whose forest management programs include sustained yield harvesting of its timberlands. Sustained yield harvesting principles ensure that the numbers of trees cut each year does not exceed the amount of new growth.

Copyright (c) 2015 Anton Textbooks, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 and 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, E-mail: PERMREQ@WILEY.COM. To order books or for customer service, call 1 (800)-CALL-WILEY (225-5945).

ISBN 978-1-118-88382-2

Printed in the United States of America
10987654321

About HOWARD ANTON

Howard Anton obtained his B.A. from Lehigh University, his M.A. from the University of Illinois, and his Ph.D. from the Polytechnic University of Brooklyn, all in mathematics. In the early 1960s he worked for Burroughs Corporation and Avco Corporation at Cape Canaveral, Florida, where he was involved with the manned space program. In 1968 he joined the Mathematics Department at Drexel University, where he taught full time until 1983. Since that time he has been an Emeritus Professor at Drexel and has devoted the majority of his time to textbook writing and activities for mathematical associations. Dr. Anton was president of the EPADEL section of the Mathematical Association of America (MAA), served on the Board of Governors of that organization, and guided the creation of the student chapters of the MAA. He has published numerous research papers in functional analysis, approximation theory, and topology, as well as pedagogical papers. He is best known for his textbooks in mathematics, which are among the most widely used in the world. There are currently more than one hundred versions of his books, including translations into Spanish, Arabic, Portuguese, Italian, Indonesian, French, Japanese, Chinese, Hebrew, and German. His textbook in linear algebra has won both the Textbook Excellence Award and the McGuffey Award from the Textbook Author's Association. For relaxation, Dr. Anton enjoys traveling and photography.

About IRL BIVENS

Irl C. Bivens, a recipient of the George Polya Award and the Merten M. Hasse Prize for Expository Writing in Mathematics, received his A.B. from Pfeiffer College and his Ph.D. from the University of North Carolina at Chapel Hill, both in mathematics. Since 1982 he has taught at Davidson College, where he currently holds the position of professor of mathematics. A typical academic year sees him teaching courses in calculus, complex analysis, and the history of mathematics. He has published numerous articles on undergraduate mathematics, as well as research papers in differential geometry. Past service to the MAA includes membership on the editorial boards of The College Mathematics Journal, the Problem Book series, Dolciani Mathematical Expositions, along with service on awards committees for expository writing. For recreation, he enjoys swimming, juggling, and the exploration of mathematical legerdemain.

Stephen L. Davis received his B.A. from Lindenwood College and his Ph.D. from Rutgers University in mathematics. Having previously taught at Rutgers University and Ohio State University, Dr. Davis joined the faculty at Davidson College in 1981, where he is currently a professor of mathematics. He regularly teaches calculus, linear algebra, abstract algebra, and computer science. Professor Davis has published numerous articles on calculus reform and testing, as well as research papers on finite group theory. Professor Davis has held several offices in the Southeastern section of the MAA, including chair and secretary-treasurer, and has represented the section on the MAA Board of Governors. He has been involved in the grading of the Advanced Placement Calculus Exam since 1988 and began a four-year term as Chief Reader in 2015. He is also webmaster for the North Carolina Association of Advanced Placement Mathematics Teachers and is actively involved in nurturing mathematically talented high school students through leadership in the Charlotte Mathematics Club. For relaxation, he plays basketball, travels, and occasionally juggles. Professor Davis and his wife Elisabeth have three children, Laura, Anne, and James, all former calculus students.
Tomy wife Pat and my children: Brian, David, and Lauren
In Memory ofmy mother Shirleymy father Benjaminmy thesis advisor and inspiration, George Bachmanmy benefactor in my time of need, Stephen Girard (1750-1831)
To
my son Robert -IB
To
my wife Elisabeth
my children: Laura, Anne, and James
-SD

PREFACE

This eleventh edition of Calculus maintains those aspects of previous editions that have led to the series' success-we continue to strive for student comprehension without sacrificing mathematical accuracy, and the exercise sets are carefully constructed to avoid unhappy surprises that can derail a calculus class.

All of the changes to the eleventh edition were carefully reviewed by outstanding teachers comprised of both users and nonusers of the previous edition. The charge of this committee was to ensure that all changes did not alter those aspects of the text that attracted users of the tenth edition and at the same time provide freshness to the new edition that would attract new users.

NEW TO THIS EDITION

- Most of the pre-calculus material in the 10 th edition Chapter 0 has been moved to Appendices, and the remaining Chapter 0 material is merged into Chapter 1.
- Some prose in other areas of the text has been tightened to enhance clarity and student understanding.
- New applied exercises have been added to the book and some existing applied exercises have been updated.

Flexibility This edition has a built-in flexibility that is designed to serve a broad spectrum of calculus philosophies-from traditional to "reform." Technology can be emphasized or not, and the order of many topics can be permuted freely to accommodate each instructor's specific needs.

Rigor The challenge of writing a good calculus book is to strike the right balance between rigor and clarity. Our goal is to present precise mathematics to the fullest extent possible in an introductory treatment. Where clarity and rigor conflict, we choose clarity; however, we believe it to be important that the student understand the difference between a careful proof and an informal argument, so we have informed the reader when the arguments being presented are informal or motivational. Theory involving $\epsilon-\delta$ arguments appears in separate sections so that they can be covered or not, as preferred by the instructor.

Rule of Four The "rule of four" refers to presenting concepts from the verbal, algebraic, visual, and numerical points of view. In keeping with current pedagogical philosophy, we used this approach whenever appropriate.

Visualization This edition makes extensive use of modern computer graphics to clarify concepts and to develop the student's ability to visualize mathematical objects, particularly
those in 3-space. For those students who are working with graphing technology, there are many exercises that are designed to develop the student's ability to generate and analyze mathematical curves and surfaces.

Quick Check Exercises Each exercise set begins with approximately five exercises (answers included) that are designed to provide students with an immediate assessment of whether they have mastered key ideas from the section. They require a minimum of computation and are answered by filling in the blanks.

Focus on Concepts Exercises Each exercise set contains a clearly identified group of problems that focus on the main ideas of the section.

Technology Exercises Most sections include exercises that are designed to be solved using either a graphing calculator or a computer algebra system such as Mathematica, Maple, or the open source program Sage. These exercises are marked with an icon for easy identification.

Applicability of Calculus One of the primary goals of this text is to link calculus to the real world and the student's own experience. This theme is carried through in the examples and exercises.

Career Preparation This text is written at a mathematical level that will prepare students for a wide variety of careers that require a sound mathematics background, including engineering, the various sciences, and business.

Trigonometry Summary and Review Deficiencies in trigonometry plague many students, so we have included a substantial trigonometry review in Appendices A and J.

Appendix on Polynomial Equations Because many calculus students are weak in solving polynomial equations, we have included an appendix (Appendix H) that reviews the Factor Theorem, the Remainder Theorem, and procedures for finding rational roots.

Principles of Integral Evaluation The traditional Techniques of Integration is entitled "Principles of Integral Evaluation" to reflect its more modern approach to the material. The chapter emphasizes general methods and the role of technology rather than specific tricks for evaluating complicated or obscure integrals.

Historical Notes The biographies and historical notes have been a hallmark of this text from its first edition and have been maintained. All of the biographical materials have been distilled from standard sources with the goal of capturing and bringing to life for the student the personalities of history's greatest mathematicians.

Margin Notes and Warnings These appear in the margins throughout the text to clarify or expand on the text exposition or to alert the reader to some pitfall.

SUPPLEMENTS

The Student Solutions Manual provides detailed solutions to the odd-numbered exercises in the text. The structure of the step-by-step solutions matches those of the worked examples in the textbook. The Student Solutions Manual is also provided in digital format to students in WileyPLUS.

Volume I (Calculus: Early Transcendental) ISBN: 978-1-119-14781-7
Volume II (Calculus: Late Transcendental) ISBN: 978-1-119-19366-1
The Student Study Guide is available for download from the book companion Web site at www.wiley.com/college/anton or at www.howardanton.com and to users of WileyPLUS.
The Instructor's Solutions Manual contains detailed solutions to all of the exercises in the text. The Instructor's Solutions Manual is also available in PDF format on the password-protected Instructor Companion Site at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.

ISBN: 978-1-119-14782-4
The Instructor's Manual suggests time allocations and teaching plans for each section in the text. Most of the teaching plans contain a bulleted list of key points to emphasize. The discussion of each section concludes with a sample homework assignment. The Instructor's Manual is available in PDF format on the password-protected Instructor Companion Site at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.
The Web Projects (Expanding the Calculus Horizon) referenced in the text can also be downloaded from the companion Web sites and from WileyPLUS.

Instructors can also access the following materials from either the book companion site or WileyPLUS:

- The Printable Test Bank features questions and answers for every section of the text.
- PowerPoint lecture slides cover the major concepts and themes of each section of the book. Personal-Response System questions ("Clicker Questions") appear at the end of each PowerPoint presentation and provide an easy way to gauge classroom understanding.
- Additional calculus content covers analytic geometry in calculus, mathematical modeling with differential equations and parametric equations, as well as an introduction to linear algebra.

WileyPLUS

WileyPLUS, Wiley's digital-learning environment, is loaded with all of the supplements listed on the previous page, and also features the following:

- Homework management tools, which easily allow you to assign and grade algorithmic questions, as well as gauge student comprehension.
- Algorithmic questions with randomized numeric values and an answer-entry palette for symbolic notation are provided online though WileyPLUS. Students can click on "help" buttons for hints, link to the relevant section of the text, show their work or query their instructor using a white board, or see a step-by-step solution (depending on instructorselecting settings).
- QuickStart predesigned reading and homework assignments. Use them as-is or customize them to fit the needs of your classroom.
- The e-book, which is an exact version of the print text but also features hyperlinks to questions, definitions, and supplements for quicker and easier support.
- Guided Online (GO) Tutorial Exercises that prompt students to build solutions step by step. Rather than simply grading an exercise answer as wrong, GO tutorial problems show students precisely where they are making a mistake.
- Are You Ready? quizzes gauge student mastery of chapter concepts and techniques and provide feedback on areas that require further attention.
- ORION Algebra and Trigonometry Refresher provides students with an opportunity to brush up on the material necessary to master calculus, as well as to determine areas that require further review.

WileyPLUS. Learn more at www.wileyplus.com.

ACKNOWLEDGMENTS

It has been our good fortune to have the advice and guidance of many talented people whose knowledge and skills have enhanced this book in many ways. We wish to thank John Wiley and Sons, in particular Shannon Corliss and Jennifer Brady for their dedication in preparing this edition. We would also like to thank Carol Sawyer for her amazing work on the text layout.

Furthermore for their valuable help we thank the following people.

Reviewers of the Eleventh Edition

Jay Abramson, Arizona State University
Gerardo Aladro, Florida International University
Theodore M. Alper, Online High School of Stanford University
Mahboub Baccouch, University of Nebraska Omaha
Jeffery J. Boats, University of Detroit Mercy
Tom Bella, University of Rhode Island
Michael Boardman, Pacific University
Charles W. Bock, Philadelphia University
Olguta Buse, Indiana University at Purdue University Indianapolis
Christopher Butler, Case Western Reserve University
Thomas Cassidy, Bucknell University
Manning G. Collier, University of Mary Washington
Charles L. Cooper, University of Central Omaha
John Davis, Baylor University
Madhu Motha, Butler County Community College
Bharath Narayanan, Pennsylvania State University
Deborah Doucette, Erie Community College
Judith Downey, University of Nebraska Omaha
Raluca Dumitru, University of North Florida
Mark Dunster, San Diego State University
Catherine Famiglietti, University of California, Irvine

Jennifer Galovich, St. John's University
William Girton, Florida Tech
Frank Gonzalez, Saddleback College William Hamill, University of Tulsa
Rita Hibschweiler, University of New Hampshire
Derek Hiley, Cuyahoga Community College
Randall Holmes, Boise State University
Dragos Hrimiuc, University of Alberta
Cindy J. Parsons, Pennsylvania State University
Bin Jiang, Portland State University
Clarence Johnson, Cuyahoga Community College
Jim E. Jones, Florida Tech
Ron Jorgensen, Milwaukee School of Engineering
Uwe Kaiser, Boise State University
Kristi Karber, University of Central Omaha
Michael Kouritzin, University of Alberta
M. Paul Latiolais, Portland State University

Douglas Lloyd, Golden West College
Lew Ludwig, Denison University
Paolo Mantero, University of California, Riverside
William McGovern, University of Washington
Thomas Milligan, University of Central Oklahoma
Carla Monticelli, Camden County College
Laura Moore-Mueller, Green River Community College

Jeanette Palmiter, Portland State University Cynthia Piez, University of Idaho
Emma Previato, Boston University
Ferdinand Rivera, San Jose State University
Joan Rosebush, University of Vermont
Hossein Rostami, Philadelphia University
Nathan Ryan, Bucknell University
Ronda Sander, University of South Carolina
Jonathan Scott, Cleveland State University
Eugene Schlereth, University of Tennessee Chattanooga
Mark Serebransky, Camden County College
Qin Sheng, Baylor University
Slobodan Simic', San Jose State University
Satyanand Singh, New York City College of Technology
Adi Tcaciuc, MacEwan University
Michael Tom, Louisiana State University
Brian VanPelt, Cuyahoga Community College
Stephanie Van Rhein, University of Missouri, Kansas City
Kathy Vranicar, University of Nebraska Omaha
Belinda Wang, University of Toronto
Anna Wlodarczyk, Florida International University
Nataliya Zadorozhna, MacEwan University
Constance Ziemian, Bucknell University
Diane Zych, Erie Community College

Frederick Adkins, Indiana University of Pennsylvania
Gerardo Aladro, Florida International University
Mike Albanese, Central Piedmont Community College
Faiz Al-Rubaee, University of North Florida
Mahboub Baccouch, University of Nebraska at Omaha
Jim Brandt, Southern Utah University
Elizabeth Brown, James Madison University
Michael Brown, San Diego Mesa College
Christopher Butler, Case Western Reserve University
Nick Bykov, San Joaquin Delta College
Jamylle Carter, Diablo Valley College
Hongwei Chen, Christopher Newport University
David A. Clark, Randolph-Macon College
Dominic P. Clemence, North Carolina Agricultural and Technical State University
Michael Cohen, Hofstra University
Hugh Cornell, Salt Lake Community College Kyle Costello, Salt Lake Community College Walter Czarnec, Framingham State University

Michael Daniel, Drexel University Judith Downey, University of Nebraska, Omaha
Artur Elezi, American University
David James Ellingson, Napa Valley College
Elaine B. Fitt, Bucks County Community College
Greg Gibson, North Carolina Agricultural and Technical State University
Yvonne A. Greenbaun, Mercer County Community College
Jerome I. Heaven, Indiana Tech
Derek Hiley, Cuyahoga Community College
John Khoury, Brevard Community College
Kathryn Lesh, Union College
Eric Matsuoka, Leeward Community College
Ted Nirgiotis, Diablo Valley College
Mihaela Poplicher, University of Cincinnati
Adrian R. Ranic, Erie Community College-North
Thomas C. Redd, North Carolina Agricultural and Technical State University
R. A. Rock, Daniel Webster College

John Paul Roop, North Carolina Agricultural and Technical State University

Philippe Rukimbira, Florida International University
Joseph P. Rusinko, Winthrop University
Susan W. Santolucito, Delgado Community College, City Park
Dee Dee Shaulis, University of Colorado at Boulder
Michael D. Shaw, Florida Institute of Technology
Jennifer Siegel, Broward College-Central Campus
Thomas W. Simpson, University of South Carolina Union
Maria Siopsis, Maryville College
Mark A. Smith, Miami University, Ohio
James Sochacki, James Madison University
Kelly Stady, Cuyahoga Community College
Alan Taylor, Union College
Kathy Vranicar, University of Nebraska, Omaha
Anke Walz, Kutztown University
Zhi-Qiang Wang, Utah State University
Tom Wells, Delta College
Greg Wisloski, Indiana University of Pennsylvania

We would also like to thank Thomas Polaski and Roger Lipsett for their accuracy check of the eleventh edition. Thanks also to Tamas Wiandt for revising the solutions manuals and Jennifer Blue for accuracy checking those solutions. We also appreciate the feedback we received from Mark Dunster, Cecelia Knoll, and Michael Rosenthal on selected WileyPLUS problems.

CONTENTS

1 LIMITS AND CONTINUITY 1
1.1 Limits (An Intuitive Approach) 1
1.2 Computing Limits 13
1.3 Limits at Infinity; End Behavior of a Function 22
1.4 Limits (Discussed More Rigorously) 31
1.5 Continuity 40
1.6 Continuity of Trigonometric Functions 51
1.7 Inverse Trigonometric Functions 56
1.8 Exponential and Logarithmic Functions 63
2 THE DERIVATIVE 79
2.1 Tangent Lines and Rates of Change 79
2.2 The Derivative Function 89
2.3 Introduction to Techniques of Differentiation 100
2.4 The Product and Quotient Rules 108
2.5 Derivatives of Trigonometric Functions 113
2.6 The Chain Rule 118
3 TOPICS IN DIFFERENTIATION 129
3.1 Implicit Differentiation 129
3.2 Derivatives of Logarithmic Functions 135
3.3 Derivatives of Exponential and Inverse Trigonometric Functions 140
3.4 Related Rates 146
3.5 Local Linear Approximation; Differentials 153
3.6 L'Hôpital's Rule; Indeterminate Forms 160
4 THE DERIVATIVE IN GRAPHING AND APPLICATIONS 172
4.1 Analysis of Functions I: Increase, Decrease, and Concavity 172
4.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials 183
4.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents 192
4.4 Absolute Maxima and Minima 204
4.5 Applied Maximum and Minimum Problems 212
4.6 Rectilinear Motion 225
4.7 Newton's Method 233
4.8 Rolle's Theorem; Mean-Value Theorem 239
5 INTEGRATION 253
5.1 An Overview of the Area Problem 253
5.2 The Indefinite Integral 258
5.3 Integration by Substitution 268
5.4 The Definition of Area as a Limit; Sigma Notation 275
5.5 The Definite Integral 285
5.6 The Fundamental Theorem of Calculus 294
5.7 Rectilinear Motion Revisited Using Integration 306
5.8 Average Value of a Function and its Applications 314
5.9 Evaluating Definite Integrals by Substitution 319
5.10 Logarithmic and Other Functions Defined by Integrals 325
6 APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY, SCIENCE, AND ENGINEERING 341
6.1 Area Between Two Curves 341
6.2 Volumes by Slicing; Disks and Washers 349
6.3 Volumes by Cylindrical Shells 358
6.4 Length of a Plane Curve 364
6.5 Area of a Surface of Revolution 370
6.6 Work 375
6.7 Moments, Centers of Gravity, and Centroids 383
6.8 Fluid Pressure and Force 392
6.9 Hyperbolic Functions and Hanging Cables 398
7 PRINCIPLES OF INTEGRAL EVALUATION 412
7.1 An Overview of Integration Methods 412
7.2 Integration by Parts 415
7.3 Integrating Trigonometric Functions 423
7.4 Trigonometric Substitutions 431
7.5 Integrating Rational Functions by Partial Fractions 437
7.6 Using Computer Algebra Systems and Tables of Integrals 445
7.7 Numerical Integration; Simpson's Rule 454
7.8 Improper Integrals 467
8 MATHEMATICAL MODELING WITH DIFFERENTIAL EQUATIONS 481
8.1 Modeling with Differential Equations 481
8.2 Separation of Variables 487
8.3 Slope Fields; Euler's Method 498
8.4 First-Order Differential Equations and Applications 504
9 INFINITE SERIES 514
9.1 Sequences 514
9.2 Monotone Sequences 524
9.3 Infinite Series 531
9.4 Convergence Tests 539
9.5 The Comparison, Ratio, and Root Tests 547
9.6 Alternating Series; Absolute and Conditional Convergence 553
9.7 Maclaurin and Taylor Polynomials 563
9.8 Maclaurin and Taylor Series; Power Series 573
9.9 Convergence of Taylor Series 582
9.10 Differentiating and Integrating Power Series; Modeling with Taylor Series 591
10 PARAMETRIC AND POLAR CURVES; CONIC SECTIONS 605
10.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves 605
10.2 Polar Coordinates 617
10.3 Tangent Lines, Arc Length, and Area for Polar Curves 630
10.4 Conic Sections 639
10.5 Rotation of Axes; Second-Degree Equations 656
10.6 Conic Sections in Polar Coordinates 661
11 THREE-DIMENSIONAL SPACE; VECTORS 674
11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces 674
11.2 Vectors 680
11.3 Dot Product; Projections 691
11.4 Cross Product 700
11.5 Parametric Equations of Lines 710
11.6 Planes in 3-Space 717
11.7 Quadric Surfaces 725
11.8 Cylindrical and Spherical Coordinates 735
12 VECTOR-VALUED FUNCTIONS 744
12.1 Introduction to Vector-Valued Functions 744
12.2 Calculus of Vector-Valued Functions 750
12.3 Change of Parameter; Arc Length 759
12.4 Unit Tangent, Normal, and Binormal Vectors 768
12.5 Curvature 773
12.6 Motion Along a Curve 781
12.7 Kepler's Laws of Planetary Motion 794
13 PARTIAL DERIVATIVES 805
13.1 Functions of Two or More Variables 805
13.2 Limits and Continuity 815
13.3 Partial Derivatives 824
13.4 Differentiability, Differentials, and Local Linearity 837
13.5 The Chain Rule 845
13.6 Directional Derivatives and Gradients 855
13.7 Tangent Planes and Normal Vectors 866
13.8 Maxima and Minima of Functions of Two Variables 872
13.9 Lagrange Multipliers 883
14 MULTIPLE INTEGRALS 894
14.1 Double Integrals 894
14.2 Double Integrals over Nonrectangular Regions 902
14.3 Double Integrals in Polar Coordinates 910
14.4 Surface Area; Parametric Surfaces 918
14.5 Triple Integrals 930
14.6 Triple Integrals in Cylindrical and Spherical Coordinates 938
14.7 Change of Variables in Multiple Integrals; Jacobians 947
14.8 Centers of Gravity Using Multiple Integrals 959
15 TOPICS IN VECTOR CALCULUS 971
15.1 Vector Fields 971
15.2 Line Integrals 980
15.3 Independence of Path; Conservative Vector Fields 995
15.4 Green's Theorem 1005
15.5 Surface Integrals 1013
15.6 Applications of Surface Integrals; Flux 1021
15.7 The Divergence Theorem 1030
15.8 Stokes' Theorem 1039
A APPENDICES
A TRIGONOMETRY REVIEW (SUMMARY) A1
B FUNCTIONS (SUMMARY) A8
C NEW FUNCTIONS FROM OLD (SUMMARY) A11
D FAMILIES OF FUNCTIONS (SUMMARY) A16
E INVERSE FUNCTIONS (SUMMARY) A23
ANSWERS TO ODD-NUMBERED EXERCISES A28
INDEX I-1

WEB APPENDICES (online only)

Available for download at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.
A TRIGONOMETRY REVIEW
B FUNCTIONS
C NEW FUNCTIONS FROM OLD
D FAMILIES OF FUNCTIONS
E INVERSE FUNCTIONS
F REAL NUMBERS, INTERVALS, AND INEQUALITIES
G ABSOLUTE VALUE
H COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS
I DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
J SOLVING POLYNOMIAL EQUATIONS
K GRAPHING FUNCTIONS USING CALCULATORS AND COMPUTER ALGEBRA SYSTEMS

L SELECTED PROOFS
M EARLY PARAMETRIC EQUATIONS OPTION
N MATHEMATICAL MODELS
O THE DISCRIMINANT
P SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS

CHAPTER WEB PROJECTS: Expanding the Calculus Horizon (online only)

Available for download at www.wiley.com/college/anton or at www.howardanton.com and in WileyPLUS.

ROBOTICS - CHAPTER 2
RAILROAD DESIGN - CHAPTER 7
ITERATION AND DYNAMICAL SYSTEMS - CHAPTER 9
COMET COLLISION - CHAPTER 10
BLAMMO THE HUMAN CANNONBALL - CHAPTER 12
HURRICANE MODELING - CHAPTER 15

THE ROOTS OF CALCULUS

Today's exciting applications of calculus have roots that can be traced to the work of the Greek mathematician Archimedes, but the actual discovery of the fundamental principles of calculus was made independently by Isaac Newton (English) and Gottfried Leibniz (German) in the late seventeenth century. The work of Newton and Leibniz was motivated by four major classes of scientific and mathematical problems of the time:

- Find the tangent line to a general curve at a given point.
- Find the area of a general region, the length of a general curve, and the volume of a general solid.
- Find the maximum or minimum value of a quantity-for example, the maximum and minimum distances of a planet from the Sun, or the maximum range attainable for a projectile by varying its angle of fire.
- Given a formula for the distance traveled by a body in any specified amount of time, find the velocity and acceleration of the body at any instant. Conversely, given a formula that
specifies the acceleration of velocity at any instant, find the distance traveled by the body in a specified period of time.

Newton and Leibniz found a fundamental relationship between the problem of finding a tangent line to a curve and the problem of determining the area of a region. Their realization of this connection is considered to be the "discovery of calculus." Though Newton saw how these two problems are related ten years before Leibniz did, Leibniz published his work twenty years before Newton. This situation led to a stormy debate over who was the rightful discoverer of calculus. The debate engulfed Europe for half a century, with the scientists of the European continent supporting Leibniz and those from England supporting Newton. The conflict was extremely unfortunate because Newton's inferior notation badly hampered scientific development in England, and the Continent in turn lost the benefit of Newton's discoveries in astronomy and physics for nearly fifty years. In spite of it all, Newton and Leibniz were sincere admirers of each other's work.

[Image: Public domain image from http://commons.wikimedia.org/ wiki/File:Hw-newton.jpg. Image provided courtesy of the University of Texas Libraries, The University of Texas at Austin.]

ISAAC NEWTON (1642-1727)

Newton was born in the village of Woolsthorpe, England. His father died before he was born and his mother raised him on the family farm. As a youth he showed little evidence of his later brilliance, except for an unusual talent with mechanical devices-he apparently built a working water clock and a toy flour mill powered by a mouse. In 1661 he entered Trinity College in Cambridge with a deficiency in geometry. Fortunately, Newton caught the eye of Isaac Barrow, a gifted mathematician and teacher. Under Barrow's guidance Newton immersed himself in mathematics and science, but he graduated without any special distinction. Because the bubonic plague was spreading rapidly through London, Newton returned to his home in Woolsthorpe and stayed there during the years of 1665 and 1666. In those two momentous years the entire framework of modern science was miraculously created in Newton's mind. He discovered calculus, recognized the underlying principles of planetary motion and gravity, and determined that "white" sunlight was composed of all colors, red to violet. For whatever reasons he kept his discoveries to himself. In 1667 he returned to Cambridge to obtain his Master's degree and upon graduation became a teacher at Trinity. Then in 1669 Newton succeeded his teacher, Isaac Barrow, to the Lucasian chair of mathematics at Trinity, one of the most honored chairs of mathematics in the world.
Thereafter, brilliant discoveries flowed from Newton steadily. He formulated the law of gravitation and used it to explain the motion of the moon, the planets, and the tides; he formulated basic theories of light, thermodynamics, and hydrodynamics; and he devised and constructed the first modern reflecting telescope. Throughout his life Newton was hesitant to publish his major discoveries, revealing them only to a
select circle of friends, perhaps because of a fear of criticism or controversy. In 1687, only after intense coaxing by the astronomer, Edmond Halley (discoverer of Halley's comet), did Newton publish his masterpiece, Philosophiae Naturalis Principia Mathematica (The Mathematical Principles of Natural Philosophy). This work is generally considered to be the most important and influential scientific book ever written. In it Newton explained the workings of the solar system and formulated the basic laws of motion, which to this day are fundamental in engineering and physics. However, not even the pleas of his friends could convince Newton to publish his discovery of calculus. Only after Leibniz published his results did Newton relent and publish his own work on calculus.

After twenty-five years as a professor, Newton suffered depression and a nervous breakdown. He gave up research in 1695 to accept a position as warden and later master of the London mint. During the twenty-five years that he worked at the mint, he did virtually no scientific or mathematical work. He was knighted in 1705 and on his death was buried in Westminster Abbey with all the honors his country could bestow. It is interesting to note that Newton was a learned theologian who viewed the primary value of his work to be its support of the existence of God. Throughout his life he worked passionately to date biblical events by relating them to astronomical phenomena. He was so consumed with this passion that he spent years searching the Book of Daniel for clues to the end of the world and the geography of hell.

Newton described his brilliant accomplishments as follows: "I seem to have been only like a boy playing on the seashore and diverting myself in now and then finding a smoother pebble or prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."

[Image: Public domain image from http://commons.wikimedia.org/wiki/ File:Gottfried_Wilhelm_von_Leibniz.jpg]

GOTTFRIED WILHELM LEIBNIZ (1646-1716)

This gifted genius was one of the last people to have mastered most major fields of knowledge-an impossible accomplishment in our own era of specialization. He was an expert in law, religion, philosophy, literature, politics, geology, metaphysics, alchemy, history, and mathematics.

Leibniz was born in Leipzig, Germany. His father, a professor of moral philosophy at the University of Leipzig, died when Leibniz was six years old. The precocious boy then gained access to his father's library and began reading voraciously on a wide range of subjects, a habit that he maintained throughout his life. At age fifteen he entered the University of Leipzig as a law student and by the age of twenty received a doctorate from the University of Altdorf. Subsequently, Leibniz followed a career in law and international politics, serving as counsel to kings and princes. During his numerous foreign missions, Leibniz came in contact with outstanding mathematicians and scientists who stimulated his interest in mathematics-most notably, the physicist Christian Huygens. In mathematics Leibniz was self-taught, learning the subject by reading papers and journals. As a result of this fragmented mathematical education, Leibniz often rediscovered the results of others, and this helped to fuel the debate over the discovery of calculus.

Leibniz never married. He was moderate in his habits, quick-tempered but easily appeased, and charitable in his judgment of other people's work.
In spite of his great achievements, Leibniz never received the honors showered on Newton, and he spent his final years as a lonely embittered man. At his funeral there was one mourner, his secretary. An eyewitness stated, "He was buried more like a robber than what he really was-an ornament of his country."

GEOMETRY FORMULAS

Parallelogram	Triangle	Trapezoid	Circle	Sector
$A=b h$	$A=\frac{1}{2} b h$	$A=\frac{1}{2}(a+b) h$	$A=\pi r^{2}, C=2 \pi r$	
Right Circular Cylinder	Right Circular Cone	Any Cylinder or Prism	h Parallel Bases	Sphere
	$V=\frac{1}{3} \pi r^{2} h, S=\pi r l$	$V=$		$V=\frac{4}{3} \pi r^{3}, S=4 \pi r^{2}$

ALGEBRA FORMULAS

THE QUADRATIC FORMULA	THE BINOMIAL FORMULA
The solutions of the quadratic equation $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	$(x+y)^{n}=x^{n}+n x^{n-1} y+\frac{n(n-1)}{1 \cdot 2} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} x^{n-3} y^{3}+\cdots+n x y^{n-1}+y^{n}$
$(x-y)^{n}=x^{n}-n x^{n-1} y+\frac{n(n-1)}{1 \cdot 2} x^{n-2} y^{2}-\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} x^{n-3} y^{3}+\cdots \pm n x y^{n-1} \mp y^{n}$	

TABLE OF INTEGRALS

BASIC FUNCTIONS

1. $\int u^{n} d u=\frac{u^{n+1}}{n+1}+C$
2. $\int \frac{d u}{u}=\ln |u|+C$
3. $\int e^{u} d u=e^{u}+C$
4. $\int \sin u d u=-\cos u+C$
5. $\int \cos u d u=\sin u+C$
6. $\int \tan u d u=\ln |\sec u|+C$
7. $\int \sin ^{-1} u d u=u \sin ^{-1} u+\sqrt{1-u^{2}}+C$
8. $\int \cos ^{-1} u d u=u \cos ^{-1} u-\sqrt{1-u^{2}}+C$
9. $\int \tan ^{-1} u d u=u \tan ^{-1} u-\ln \sqrt{1+u^{2}}+C$
10. $\int a^{u} d u=\frac{a^{u}}{\ln a}+C$
11. $\int \ln u d u=u \ln u-u+C$
12. $\int \cot u d u=\ln |\sin u|+C$
13. $\begin{aligned} \int \sec u d u & =\ln |\sec u+\tan u|+C \\ & =\ln \left|\tan \left(\frac{1}{4} \pi+\frac{1}{2} u\right)\right|+\end{aligned}$
14. $\begin{aligned} \int \csc u d u & =\ln |\csc u-\cot u|+C \\ & =\ln \left|\tan \frac{1}{2} u\right|+C\end{aligned}$
15. $\int \cot ^{-1} u d u=u \cot ^{-1} u+\ln \sqrt{1+u^{2}}+C$
16. $\int \sec ^{-1} u d u=u \sec ^{-1} u-\ln \left|u+\sqrt{u^{2}-1}\right|+C$
17. $\int \csc ^{-1} u d u=u \csc ^{-1} u+\ln \left|u+\sqrt{u^{2}-1}\right|+C$
18. $\int \frac{1}{1 \pm \sin u} d u=\tan u \mp \sec u+C$
19. $\int \frac{1}{1 \pm \cos u} d u=-\cot u \pm \csc u+C$
20. $\int \frac{1}{1 \pm \tan u} d u=\frac{1}{2}(u \pm \ln |\cos u \pm \sin u|)+C$
21. $\int \frac{1}{\sin u \cos u} d u=\ln |\tan u|+C$
22. $\int \frac{1}{1 \pm \cot u} d u=\frac{1}{2}(u \mp \ln |\sin u \pm \cos u|)+C$
23. $\int \frac{1}{1 \pm \sec u} d u=u+\cot u \mp \csc u+C$
24. $\int \frac{1}{1 \pm \csc u} d u=u-\tan u \pm \sec u+C$
25. $\int \frac{1}{1 \pm e^{u}} d u=u-\ln \left(1 \pm e^{u}\right)+C$

POWERS OF TRIGONOMETRIC FUNCTIONS

26. $\int \sin ^{2} u d u=\frac{1}{2} u-\frac{1}{4} \sin 2 u+C$
27. $\int \cos ^{2} u d u=\frac{1}{2} u+\frac{1}{4} \sin 2 u+C$
28. $\int \tan ^{2} u d u=\tan u-u+C$
29. $\int \sin ^{n} u d u=-\frac{1}{n} \sin ^{n-1} u \cos u+\frac{n-1}{n} \int \sin ^{n-2} u d u$
30. $\int \cos ^{n} u d u=\frac{1}{n} \cos ^{n-1} u \sin u+\frac{n-1}{n} \int \cos ^{n-2} u d u$
31. $\int \tan ^{n} u d u=\frac{1}{n-1} \tan ^{n-1} u-\int \tan ^{n-2} u d u$
32. $\int \cot ^{2} u d u=-\cot u-u+C$
33. $\int \sec ^{2} u d u=\tan u+C$
34. $\int \csc ^{2} u d u=-\cot u+C$
35. $\int \cot ^{n} u d u=-\frac{1}{n-1} \cot ^{n-1} u-\int \cot ^{n-2} u d u$
36. $\int \sec ^{n} u d u=\frac{1}{n-1} \sec ^{n-2} u \tan u+\frac{n-2}{n-1} \int \sec ^{n-2} u d u$
37. $\int \csc ^{n} u d u=-\frac{1}{n-1} \csc ^{n-2} u \cot u+\frac{n-2}{n-1} \int \csc ^{n-2} u d u$

PRODUCTS OF TRIGONOMETRIC FUNCTIONS

38. $\int \sin m u \sin n u d u=-\frac{\sin (m+n) u}{2(m+n)}+\frac{\sin (m-n) u}{2(m-n)}+C$
39. $\int \sin m u \cos n u d u=-\frac{\cos (m+n) u}{2(m+n)}-\frac{\cos (m-n) u}{2(m-n)}+C$
40. $\int \cos m u \cos n u d u=\frac{\sin (m+n) u}{2(m+n)}+\frac{\sin (m-n) u}{2(m-n)}+C$
41. $\int \sin ^{m} u \cos ^{n} u d u=-\frac{\sin ^{m-1} u \cos ^{n+1} u}{m+n}+\frac{m-1}{m+n} \int \sin ^{m-2} u \cos ^{n} u d u$ $=\frac{\sin ^{m+1} u \cos ^{n-1} u}{m+n}+\frac{n-1}{m+n} \int \sin ^{m} u \cos ^{n-2} u d u$

PRODUCTS OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS

42. $\int e^{a u} \sin b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \sin b u-b \cos b u)+C$
43. $\int e^{a u} \cos b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \cos b u+b \sin b u)+C$

POWERS OF u MULTIPLYING OR DIVIDING BASIC FUNCTIONS
44. $\int u \sin u d u=\sin u-u \cos u+C$
45. $\int u \cos u d u=\cos u+u \sin u+C$
46. $\int u^{2} \sin u d u=2 u \sin u+\left(2-u^{2}\right) \cos u+C$
47. $\int u^{2} \cos u d u=2 u \cos u+\left(u^{2}-2\right) \sin u+C$
48. $\int u^{n} \sin u d u=-u^{n} \cos u+n \int u^{n-1} \cos u d u$
49. $\int u^{n} \cos u d u=u^{n} \sin u-n \int u^{n-1} \sin u d u$
50. $\int u^{n} \ln u d u=\frac{u^{n+1}}{(n+1)^{2}}[(n+1) \ln u-1]+C$
51. $\int u e^{u} d u=e^{u}(u-1)+C$
52. $\int u^{n} e^{u} d u=u^{n} e^{u}-n \int u^{n-1} e^{u} d u$
53. $\int u^{n} a^{u} d u=\frac{u^{n} a^{u}}{\ln a}-\frac{n}{\ln a} \int u^{n-1} a^{u} d u+C$
54. $\int \frac{e^{u} d u}{u^{n}}=-\frac{e^{u}}{(n-1) u^{n-1}}+\frac{1}{n-1} \int \frac{e^{u} d u}{u^{n-1}}$
55. $\int \frac{a^{u} d u}{u^{n}}=-\frac{a^{u}}{(n-1) u^{n-1}}+\frac{\ln a}{n-1} \int \frac{a^{u} d u}{u^{n-1}}$
56. $\int \frac{d u}{u \ln u}=\ln |\ln u|+C$

POLYNOMIALS MULTIPLYING BASIC FUNCTIONS

57. $\int p(u) e^{a u} d u=\frac{1}{a} p(u) e^{a u}-\frac{1}{a^{2}} p^{\prime}(u) e^{a u}+\frac{1}{a^{3}} p^{\prime \prime}(u) e^{a u}-\cdots \quad[$ signs alternate: $+-+-\cdots]$
58. $\int p(u) \sin a u d u=-\frac{1}{a} p(u) \cos a u+\frac{1}{a^{2}} p^{\prime}(u) \sin a u+\frac{1}{a^{3}} p^{\prime \prime}(u) \cos a u-\cdots \quad$ [signs alternate in pairs after first term: $\left.++--++--\cdots\right]$
59. $\int p(u) \cos a u d u=\frac{1}{a} p(u) \sin a u+\frac{1}{a^{2}} p^{\prime}(u) \cos a u-\frac{1}{a^{3}} p^{\prime \prime}(u) \sin a u-\cdots \quad[$ signs alternate in pairs: $++--++--\cdots]$

Kevin Morroun and William O'Nieal
Air resistance prevents the velocity of a skydiver from increasing indefinitely. The velocity approaches a limit, called the "terminal velocity."

LIMITS AND CONTINUITY

The development of calculus in the seventeenth century by Newton and Leibniz provided scientists with their first real understanding of what is meant by an "instantaneous rate of change" such as velocity and acceleration. Once the idea was understood conceptually, efficient computational methods followed, and science took a quantum leap forward. The fundamental building block on which rates of change rest is the concept of a "limit," an idea that is so important that all other calculus concepts are now based on it.

In this chapter we will develop the concept of a limit in stages, proceeding from an informal, intuitive notion to a precise mathematical definition. We will also develop theorems and procedures for calculating limits, and use limits to study "continuous" curves. We will conclude by studying continuity and other properties of trigonometric, inverse trigonometric, logarithmic, and exponential functions.

1.1 LIMITS (AN INTUITIVE APPROACH)

Δ Figure 1.1.1

Δ Figure 1.1.2

The concept of a "limit" is the fundamental building block on which all calculus concepts are based. In this section we will study limits informally, with the goal of developing an intuitive feel for the basic ideas. In the next three sections we will focus on computational methods and precise definitions.

Many of the ideas of calculus originated with the following two geometric problems:

THE TANGENT LINE PROBLEM Given a function f and a point $P\left(x_{0}, y_{0}\right)$ on its graph, find an equation of the line that is tangent to the graph at P (Figure 1.1.1).

THE AREA PROBLEM Given a function f, find the area between the graph of f and an interval $[a, b]$ on the x-axis (Figure 1.1.2).

Traditionally, that portion of calculus arising from the tangent line problem is called differential calculus and that arising from the area problem is called integral calculus. However, we will see later that the tangent line and area problems are so closely related that the distinction between differential and integral calculus is somewhat artificial.

TANGENT LINES AND LIMITS

In plane geometry, a line is called tangent to a circle if it meets the circle at precisely one point (Figure 1.1.3a). Although this definition is adequate for circles, it is not appropriate for more general curves. For example, in Figure 1.1.3b, the line meets the curve exactly once but is obviously not what we would regard to be a tangent line; and in Figure 1.1.3c, the line appears to be tangent to the curve, yet it intersects the curve more than once.

To obtain a definition of a tangent line that applies to curves other than circles, we must view tangent lines another way. For this purpose, suppose that we are interested in the tangent line at a point P on a curve in the $x y$-plane and that Q is any point that lies on

(c)
Δ Figure 1.1.3 distinct?

Δ Figure 1.1.5
the curve and is different from P. The line through P and Q is called a secant line for the curve at P. Intuition suggests that if we move the point Q along the curve toward P, then the secant line will rotate toward a limiting position. The line in this limiting position is what we will consider to be the tangent line at P (Figure 1.1.4a). As suggested by Figure 1.1.4b, this new concept of a tangent line coincides with the traditional concept when applied to circles.

(a)

(b)

- Example 1 Find an equation for the tangent line to the parabola $y=x^{2}$ at the point $P(1,1)$.

Solution. If we can find the slope m_{tan} of the tangent line at P, then we can use the point P and the point-slope formula for a line (Web Appendix H) to write the equation of the tangent line as

$$
\begin{equation*}
y-1=m_{\tan }(x-1) \tag{1}
\end{equation*}
$$

To find the slope m_{tan}, consider the secant line through P and a point $Q\left(x, x^{2}\right)$ on the parabola that is distinct from P. The slope $m_{\text {sec }}$ of this secant line is

$$
\begin{equation*}
m_{\mathrm{sec}}=\frac{x^{2}-1}{x-1} \tag{2}
\end{equation*}
$$

Figure 1.1.4a suggests that if we now let Q move along the parabola, getting closer and closer to P, then the limiting position of the secant line through P and Q will coincide with that of the tangent line at P. This in turn suggests that the value of $m_{\text {sec }}$ will get closer and closer to the value of m_{tan} as P moves toward Q along the curve. However, to say that $Q\left(x, x^{2}\right)$ gets closer and closer to $P(1,1)$ is algebraically equivalent to saying that x gets closer and closer to 1 . Thus, the problem of finding $m_{\text {tan }}$ reduces to finding the "limiting value" of $m_{\text {sec }}$ in Formula (2) as x gets closer and closer to 1 (but with $x \neq 1$ to ensure that P and Q remain distinct).

We can rewrite (2) as

$$
m_{\mathrm{sec}}=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{(x-1)}=x+1
$$

where the cancellation of the factor $(x-1)$ is allowed because $x \neq 1$. It is now evident that $m_{\text {sec }}$ gets closer and closer to 2 as x gets closer and closer to 1 . Thus, $m_{\tan }=2$ and (1) implies that the equation of the tangent line is

$$
y-1=2(x-1) \quad \text { or equivalently } \quad y=2 x-1
$$

Figure 1.1.5 shows the graph of $y=x^{2}$ and this tangent line.

Δ Figure 1.1.6

AREAS AND LIMITS

Just as the general notion of a tangent line leads to the concept of limit, so does the general notion of area. For plane regions with straight-line boundaries, areas can often be calculated by subdividing the region into rectangles or triangles and adding the areas of the constituent parts (Figure 1.1.6). However, for regions with curved boundaries, such as that in Figure 1.1.7a, a more general approach is needed. One such approach is to begin by approximating the area of the region by inscribing a number of rectangles of equal width under the curve and adding the areas of these rectangles (Figure 1.1.7b). Intuition suggests that if we repeat that approximation process using more and more rectangles, then the rectangles will tend to fill in the gaps under the curve, and the approximations will get closer and closer to the exact area under the curve (Figure 1.1.7c). This suggests that we can define the area under the curve to be the limiting value of these approximations. This idea will be considered in detail later, but the point to note here is that once again the concept of a limit comes into play.

(a)

(b)

(c)
\triangle Figure 1.1.7

Andreas Nilsson/Shutterstock
This figure shows a region called the Mandelbrot Set. It illustrates how complicated a region in the plane can be and why the notion of area requires careful definition.

DECIMALS AND LIMITS
Limits also arise in the familiar context of decimals. For example, the decimal expansion of the fraction $\frac{1}{3}$ is

$$
\begin{equation*}
\frac{1}{3}=0.33333 \ldots \tag{3}
\end{equation*}
$$

in which the dots indicate that the digit 3 repeats indefinitely. Although you may not have thought about decimals in this way, we can write (3) as

$$
\begin{equation*}
\frac{1}{3}=0.33333 \ldots=0.3+0.03+0.003+0.0003+0.00003+\cdots \tag{4}
\end{equation*}
$$

which is a sum with "infinitely many" terms. As we will discuss in more detail later, we interpret (4) to mean that the succession of finite sums

$$
0.3, \quad 0.3+0.03, \quad 0.3+0.03+0.003,0.3+0.03+0.003+0.0003, \ldots
$$

gets closer and closer to a limiting value of $\frac{1}{3}$ as more and more terms are included. Thus, limits even occur in the familiar context of decimal representations of real numbers.

LIMITS

Now that we have seen how limits arise in various ways, let us focus on the limit concept itself.

The most basic use of limits is to describe how a function behaves as the independent variable approaches a given value. For example, let us examine the behavior of the function

$$
f(x)=x^{2}-x+1
$$

for x-values closer and closer to 2. It is evident from the graph and table in Figure 1.1.8 that the values of $f(x)$ get closer and closer to 3 as values of x are selected closer and closer to 2 on either the left or the right side of 2 . We describe this by saying that the "limit of $x^{2}-x+1$ is 3 as x approaches 2 from either side," and we write

$$
\begin{equation*}
\lim _{x \rightarrow 2}\left(x^{2}-x+1\right)=3 \tag{5}
\end{equation*}
$$

\triangle Figure 1.1.8

Since x is required to be different from a in (6), the value of f at a, or even whether f is defined at a, has no bearing on the limit L. The limit describes the behavior of f close to a but not at a.

TECHNOLOGY MASTERY
Use a graphing utility to generate the graph of the equation $y=f(x)$ for the function in (9). Find a window containing $x=1$ in which all values of $f(x)$ are within 0.5 of $y=2$ and one in which all values of $f(x)$ are within 0.1 of $y=2$.

This leads us to the following general idea.
1.1.1 LIMITS (AN INFORMAL VIEW) If the values of $f(x)$ can be made as close as we like to L by taking values of x sufficiently close to a (but not equal to a), then we write

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=L \tag{6}
\end{equation*}
$$

which is read "the limit of $f(x)$ as x approaches a is L " or " $f(x)$ approaches L as x approaches a." The expression in (6) can also be written as

$$
\begin{equation*}
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow a \tag{7}
\end{equation*}
$$

Example 2 Use numerical evidence to make a conjecture about the value of

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1} \tag{8}
\end{equation*}
$$

Solution. Although the function

$$
\begin{equation*}
f(x)=\frac{x-1}{\sqrt{x}-1} \tag{9}
\end{equation*}
$$

is undefined at $x=1$, this has no bearing on the limit. Table 1.1.1 shows sample x-values approaching 1 from the left side and from the right side. In both cases the corresponding values of $f(x)$, calculated to six decimal places, appear to get closer and closer to 2 , and hence we conjecture that

$$
\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}=2
$$

This is consistent with the graph of f shown in Figure 1.1.9. In the next section we will show how to obtain this result algebraically.

Table 1.1.1

x	0.99	0.999	0.9999	0.99999		1.00001	1.0001	1.001	1.01			
$f(x)$	1.994987	1.999500	1.999950	1.99999		2.000005	2.000050	2.000500	2.004988			
Left side									Right side			

Figure 1.1.9

Use numerical evidence to determine whether the limit in (11) changes if x is measured in degrees.

Table 1.1.2

x (RADIANS)	$y=\frac{\sin x}{x}$
± 1.0	0.84147
± 0.9	0.87036
± 0.8	0.89670
± 0.7	0.92031
± 0.6	0.94107
± 0.5	0.95885
± 0.4	0.97355
± 0.3	0.98507
± 0.2	0.99335
± 0.1	0.99833
± 0.01	0.99998

Example 3 Use numerical evidence to make a conjecture about the value of

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x} \tag{10}
\end{equation*}
$$

Solution. With the help of a calculating utility set in radian mode, we obtain Table 1.1.2. The data in the table suggest that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \tag{11}
\end{equation*}
$$

The result is consistent with the graph of $f(x)=(\sin x) / x$ shown in Figure 1.1.10. Later in this chapter we will give a geometric argument to prove that our conjecture is correct.

As x approaches 0 from the left or right, $f(x)$ approaches 1 .

SAMPLING PITFALLS

Numerical evidence can sometimes lead to incorrect conclusions about limits because of roundoff error or because the sample values chosen do not reveal the true limiting behavior. For example, one might incorrectly conclude from Table 1.1.3 that

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)=0
$$

The fact that this is not correct is evidenced by the graph of f in Figure 1.1.11. The graph reveals that the values of f oscillate between -1 and 1 with increasing rapidity as $x \rightarrow 0$ and hence do not approach a limit. The data in the table deceived us because the x values selected all happened to be x-intercepts for $f(x)$. This points out the need for having alternative methods for corroborating limits conjectured from numerical evidence.

Table 1.1.3

x	$\frac{\pi}{x}$	$f(x)=\sin \left(\frac{\pi}{x}\right)$
$x= \pm 1$	$\pm \pi$	$\sin (\pm \pi)=0$
$x= \pm 0.1$	$\pm 10 \pi$	$\sin (\pm 10 \pi)=0$
$x= \pm 0.01$	$\pm 100 \pi$	$\sin (\pm 100 \pi)=0$
$x= \pm 0.001$	$\pm 1000 \pi$	$\sin (\pm 1000 \pi)=0$
$x= \pm 0.0001$	$\pm 10,000 \pi$	$\sin (\pm 10,000 \pi)=0$
$\quad \vdots$	\vdots	\vdots

Δ Figure 1.1.11

ONE-SIDED LIMITS

The limit in (6) is called a two-sided limit because it requires the values of $f(x)$ to get closer and closer to L as values of x are taken from either side of $x=a$. However, some functions exhibit different behaviors on the two sides of an x-value a, in which case it is necessary to distinguish whether values of x near a are on the left side or on the right side of a for purposes of investigating limiting behavior. For example, consider the function

$$
f(x)=\frac{|x|}{x}=\left\{\begin{align*}
1, & x>0 \tag{12}\\
-1, & x<0
\end{align*}\right.
$$

$$
y=\frac{|x|}{x}
$$

Δ Figure 1.1.12

As with two-sided limits, the one-sided limits in (14) and (15) can also be written as

$$
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow a^{+}
$$

and

$$
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow a^{-}
$$

respectively.
which is graphed in Figure 1.1.12. As x approaches 0 from the right, the values of $f(x)$ approach a limit of 1 [in fact, the values of $f(x)$ are exactly 1 for all such x], and similarly, as x approaches 0 from the left, the values of $f(x)$ approach a limit of -1 . We denote these limits by writing

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1 \tag{13}
\end{equation*}
$$

With this notation, the superscript " + " indicates a limit from the right and the superscript "-" indicates a limit from the left.

This leads to the general idea of a one-sided limit.
1.1.2 ONE-SIDED LIMITS (AN INFORMAL VIEW) If the values of $f(x)$ can be made as close as we like to L by taking values of x sufficiently close to a (but greater than a), then we write

$$
\begin{equation*}
\lim _{x \rightarrow a^{+}} f(x)=L \tag{14}
\end{equation*}
$$

and if the values of $f(x)$ can be made as close as we like to L by taking values of x sufficiently close to a (but less than a), then we write

$$
\begin{equation*}
\lim _{x \rightarrow a^{-}} f(x)=L \tag{15}
\end{equation*}
$$

Expression (14) is read "the limit of $f(x)$ as x approaches a from the right is L " or " $f(x)$ approaches L as x approaches a from the right." Similarly, expression (15) is read "the limit of $f(x)$ as x approaches a from the left is L " or " $f(x)$ approaches L as x approaches a from the left."

THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS

In general, there is no guarantee that a function f will have a two-sided limit at a given point a; that is, the values of $f(x)$ may not get closer and closer to any single real number L as $x \rightarrow a$. In this case we say that

$$
\lim _{x \rightarrow a} f(x) \quad \text { does not exist }
$$

Similarly, the values of $f(x)$ may not get closer and closer to a single real number L as $x \rightarrow a^{+}$or as $x \rightarrow a^{-}$. In these cases we say that

$$
\lim _{x \rightarrow a^{+}} f(x) \quad \text { does not exist }
$$

or that

$$
\lim _{x \rightarrow a^{-}} f(x) \text { does not exist }
$$

In order for the two-sided limit of a function $f(x)$ to exist at a point a, the values of $f(x)$ must approach some real number L as x approaches a, and this number must be the same regardless of whether x approaches a from the left or the right. This suggests the following result, which we state without formal proof.
1.1.3 THE RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED LIMITS The two-sided limit of a function $f(x)$ exists at a if and only if both of the one-sided limits exist at a and have the same value; that is,

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

Example 4 Explain why

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

does not exist.

Solution. As x approaches 0 , the values of $f(x)=|x| / x$ approach -1 from the left and approach 1 from the right [see (13)]. Thus, the one-sided limits at 0 are not the same.

Example 5 For the functions in Figure 1.1.13, find the one-sided and two-sided limits at $x=a$ if they exist.

Solution. The functions in all three figures have the same one-sided limits as $x \rightarrow a$, since the functions are identical, except at $x=a$. These limits are

$$
\lim _{x \rightarrow a^{+}} f(x)=3 \quad \text { and } \quad \lim _{x \rightarrow a^{-}} f(x)=1
$$

In all three cases the two-sided limit does not exist as $x \rightarrow a$ because the one-sided limits are not equal.

Example 6 For the functions in Figure 1.1.14, find the one-sided and two-sided limits at $x=a$ if they exist.

Solution. As in the preceding example, the value of f at $x=a$ has no bearing on the limits as $x \rightarrow a$, so in all three cases we have

$$
\lim _{x \rightarrow a^{+}} f(x)=2 \quad \text { and } \quad \lim _{x \rightarrow a^{-}} f(x)=2
$$

Since the one-sided limits are equal, the two-sided limit exists and

$$
\lim _{x \rightarrow a} f(x)=2
$$

- Figure 1.1.14

INFINITE LIMITS

Sometimes one-sided or two-sided limits fail to exist because the values of the function increase or decrease without bound. For example, consider the behavior of $f(x)=1 / x$ for values of x near 0 . It is evident from the table and graph in Figure 1.1.15 that as x-values are taken closer and closer to 0 from the right, the values of $f(x)=1 / x$ are positive and increase without bound; and as x-values are taken closer and closer to 0 from the left, the values of $f(x)=1 / x$ are negative and decrease without bound. We describe these limiting behaviors by writing

The symbols $+\infty$ and $-\infty$ here are not real numbers; they simply describe particular ways in which the limits fail to exist. Do not make the mistake of manipulating these symbols using rules of algebra. For example, it is incorrect to write $(+\infty)-(+\infty)=0$.

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

x	-1	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1	1
$\frac{1}{x}$	-1	-10	-100	-1000	-10,000		10,000	1000	100	10	1

Δ Figure 1.1.15
1.1.4 INFINITE LIMITS (AN INFORMAL VIEW) The expressions

$$
\lim _{x \rightarrow a^{-}} f(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=+\infty
$$

denote that $f(x)$ increases without bound as x approaches a from the left and from the right, respectively. If both are true, then we write

$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

Similarly, the expressions

$$
\lim _{x \rightarrow a^{-}} f(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

denote that $f(x)$ decreases without bound as x approaches a from the left and from the right, respectively. If both are true, then we write

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

Example 7 For the functions in Figure 1.1.16, describe the limits at $x=a$ in appropriate limit notation.

Solution (a). In Figure 1.1.16a, the function increases without bound as x approaches a from the right and decreases without bound as x approaches a from the left. Thus,

$$
\lim _{x \rightarrow a^{+}} \frac{1}{x-a}=+\infty \quad \text { and } \quad \lim _{x \rightarrow a^{-}} \frac{1}{x-a}=-\infty
$$

Solution (b). In Figure 1.1.16b, the function increases without bound as x approaches a from both the left and right. Thus,

$$
\lim _{x \rightarrow a} \frac{1}{(x-a)^{2}}=\lim _{x \rightarrow a^{+}} \frac{1}{(x-a)^{2}}=\lim _{x \rightarrow a^{-}} \frac{1}{(x-a)^{2}}=+\infty
$$

Solution (c). In Figure 1.1.16c, the function decreases without bound as x approaches a from the right and increases without bound as x approaches a from the left. Thus,

$$
\lim _{x \rightarrow a^{+}} \frac{-1}{x-a}=-\infty \quad \text { and } \quad \lim _{x \rightarrow a^{-}} \frac{-1}{x-a}=+\infty
$$

Solution (d). In Figure 1.1.16d, the function decreases without bound as x approaches a from both the left and right. Thus,

$$
\lim _{x \rightarrow a} \frac{-1}{(x-a)^{2}}=\lim _{x \rightarrow a^{+}} \frac{-1}{(x-a)^{2}}=\lim _{x \rightarrow a^{-}} \frac{-1}{(x-a)^{2}}=-\infty
$$

(a)

(b)

(c)

(d)
Δ Figure 1.1.16

VERTICAL ASYMPTOTES

Figure 1.1.17 illustrates geometrically what happens when any of the following situations occur:

$$
\lim _{x \rightarrow a^{-}} f(x)=+\infty, \quad \lim _{x \rightarrow a^{+}} f(x)=+\infty, \quad \lim _{x \rightarrow a^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

In each case the graph of $y=f(x)$ either rises or falls without bound, squeezing closer and closer to the vertical line $x=a$ as x approaches a from the side indicated in the limit. The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ (from the Greek word asymptotos, meaning "nonintersecting").

$\lim _{x \rightarrow a^{-}} f(x)=+\infty$

$$
\lim _{x \rightarrow a^{+}} f(x)=+\infty
$$

$\lim _{x \rightarrow a^{-}} f(x)=-\infty$

$\lim _{x \rightarrow a^{+}} f(x)=-\infty$
Δ Figure 1.1.17
In general, the graph of a single function can display a wide variety of limits.

Example 8 For the function f graphed in Figure 1.1.18, find

Δ Figure 1.1.18
(a) $\lim _{x \rightarrow-2^{-}} f(x)$
(b) $\lim _{x \rightarrow-2^{+}} f(x)$
(c) $\lim _{x \rightarrow 0^{-}} f(x)$
(d) $\lim _{x \rightarrow 0^{+}} f(x)$
(e) $\lim _{x \rightarrow 4^{-}} f(x)$
(f) $\lim _{x \rightarrow 4^{+}} f(x)$
(g) the vertical asymptotes of the graph of f.

Solution (a) and (b).

$$
\lim _{x \rightarrow-2^{-}} f(x)=1=f(-2) \quad \text { and } \quad \lim _{x \rightarrow-2^{+}} f(x)=-2
$$

Solution (c) and (d).

$$
\lim _{x \rightarrow 0^{-}} f(x)=0=f(0) \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f(x)=-\infty
$$

Solution (e) and (f).

$$
\lim _{x \rightarrow 4^{-}} f(x) \text { does not exist due to oscillation and } \lim _{x \rightarrow 4^{+}} f(x)=+\infty
$$

Solution (g). The y-axis and the line $x=4$ are vertical asymptotes for the graph of f.

